Correspondence analysis

Methods of Corpus Linguistics (class 7)

Mariana Montes

Outline

  • Introduction
  • Terminology
  • Interpretation
  • Linguistic example

Correspondence Analysis

Dimension reduction technique for “count” data.

Visualization: biplot, showing relationships:

  • between rows

  • between columns

  • between rows and columns (kind of).

Introduction

Linguistic example

Classic (non-linguistic) example1

library(tidyverse)
library(mclm)
data(smoke)
print_matrix(smoke)
none light medium heavy
SM 4 2 3 2
JM 4 3 7 4
SE 25 10 12 4
JE 18 24 33 13
SC 10 6 7 2
  • Rows are types of employees (Senior/Junior manager, Senior/Junior Employee, Secretary).

  • Columns are types of smokers.

  • Values in the cells are counts.

Smoke plot

smoke_ca <- ca(smoke)
plot(smoke_ca)

Smoke CA

Code
smoke_ca

 Principal inertias (eigenvalues):
           1        2        3       
Value      0.074759 0.010017 0.000414
Percentage 87.76%   11.76%   0.49%   


 Rows:
              SM      JM      SE     JE       SC
Mass     0.05699  0.0933  0.2642 0.4560  0.12953
ChiDist  0.21656  0.3569  0.3808 0.2400  0.21617
Inertia  0.00267  0.0119  0.0383 0.0263  0.00605
Dim. 1  -0.24054  0.9471 -1.3920 0.8520 -0.73546
Dim. 2  -1.93571 -2.4310 -0.1065 0.5769  0.78843


 Columns:
           none   light medium   heavy
Mass     0.3161 0.23316 0.3212  0.1295
ChiDist  0.3945 0.17400 0.1981  0.3551
Inertia  0.0492 0.00706 0.0126  0.0163
Dim. 1  -1.4385 0.36375 0.7180  1.0744
Dim. 2  -0.3047 1.40943 0.0735 -1.9760
Code
summary(smoke_ca)

Principal inertias (eigenvalues):

 dim    value      %   cum%   scree plot               
 1      0.074759  87.8  87.8  **********************   
 2      0.010017  11.8  99.5  ***                      
 3      0.000414   0.5 100.0                           
        -------- -----                                 
 Total: 0.085190 100.0                                 


Rows:
    name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
1 |   SM |   57  893   31 |  -66  92   3 | -194 800 214 |
2 |   JM |   93  991  139 |  259 526  84 | -243 465 551 |
3 |   SE |  264 1000  450 | -381 999 512 |  -11   1   3 |
4 |   JE |  456 1000  308 |  233 942 331 |   58  58 152 |
5 |   SC |  130  999   71 | -201 865  70 |   79 133  81 |

Columns:
    name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
1 | none |  316 1000  577 | -393 994 654 |  -30   6  29 |
2 | lght |  233  984   83 |   99 327  31 |  141 657 463 |
3 | medm |  321  983  148 |  196 982 166 |    7   1   2 |
4 | hevy |  130  995  192 |  294 684 150 | -198 310 506 |

Terminology

Original matrix \(N\)

\(n \times m\) matrix with frequency counts \(n_{ij}\)

  • \(n\) = 5
  • \(m\) = 4
  • \(n_{\mathrm{SE, light}}\) = 10
Code
smoke_mtx <- as.matrix(smoke)
print_matrix(smoke_mtx)
none light medium heavy
SM 4 2 3 2
JM 4 3 7 4
SE 25 10 12 4
JE 18 24 33 13
SC 10 6 7 2

Correspondence matrix \(P\)

\(n \times m\) matrix with overall proportions \(p_{ij}\)

Mass

  • \(p_{\mathrm{SE,light}}\) = 0.052

  • \(p_{\mathrm{SE,.}}\) = 0.264

  • \(p_{\mathrm{.,light}}\) = 0.233

Code
prop.table(smoke_mtx) %>% 
  addmargins() %>% 
  print_matrix()
none light medium heavy Sum
SM 0.021 0.010 0.016 0.010 0.057
JM 0.021 0.016 0.036 0.021 0.093
SE 0.130 0.052 0.062 0.021 0.264
JE 0.093 0.124 0.171 0.067 0.456
SC 0.052 0.031 0.036 0.010 0.130
Sum 0.316 0.233 0.321 0.130 1.000

Row profiles

\(n \times m\) matrix with overall row proportions \(r_{ij}\)

  • \(r_{\mathrm{SE,light}}\) = 0.1961

  • columns are dimensions in the row points cloud

  • In bold: the row centroid (vector of column masses!)

Code
addmargins(smoke_mtx, 1) %>% 
  prop.table(1) %>% 
  print_matrix()
none light medium heavy
SM 0.364 0.182 0.273 0.182
JM 0.222 0.167 0.389 0.222
SE 0.490 0.196 0.235 0.078
JE 0.205 0.273 0.375 0.148
SC 0.400 0.240 0.280 0.080
Sum 0.316 0.233 0.321 0.130

What do you mean, row point cloud?

Code
row_cloud <- addmargins(smoke_mtx, 1) %>% prop.table(1) %>% 
  as_tibble(rownames = "Employee") %>%
  mutate(Employee = if_else(Employee == "Sum", "Centroid", Employee))
row_cloud %>% ggplot(aes(x = none, y = light, label = Employee)) +
  geom_text(size = 10) +
  theme_minimal(base_size = 20) +
  annotate("point", x = row_cloud$none[[nrow(row_cloud)]], y = row_cloud$light[[nrow(row_cloud)]], shape = 1, size = 25)

  • BUT more than two dimensions

  • We then compute \(\chi^2\) distances instead of euclidean distances

  • How far are points from the centroid?

Column profiles

\(n \times m\) matrix with overall row proportions \(c_{ij}\)

  • \(c_{\mathrm{SE,light}}\) = 0.2221

  • rows are dimensions in the column points cloud

  • In bold: the column centroid (vector of row masses!)

Code
addmargins(smoke_mtx, 2) %>% 
  prop.table(2) %>% 
  print_matrix()
none light medium heavy Sum
SM 0.066 0.044 0.048 0.08 0.057
JM 0.066 0.067 0.113 0.16 0.093
SE 0.410 0.222 0.194 0.16 0.264
JE 0.295 0.533 0.532 0.52 0.456
SC 0.164 0.133 0.113 0.08 0.130

Also a column point cloud?

Code
row_cloud %>% ggplot(aes(x = none, y = light, label = Employee)) +
  geom_text(size = 8) +
  theme_minimal(base_size = 20) +
  annotate("point", x = row_cloud$none[[nrow(row_cloud)]], y = row_cloud$light[[nrow(row_cloud)]], shape = 1, size = 25) +
  labs(title = "Two dimensions of the row cloud.")
col_cloud <- addmargins(smoke_mtx, 2) %>% prop.table(2) %>% 
  t() %>% 
  as_tibble(rownames = "Smoker") %>%
  mutate(Smoker = if_else(Smoker == "Sum", "Centroid", Smoker))
col_cloud %>% ggplot(aes(x = SM, y = SC, label = Smoker)) +
  geom_text(size = 8) +
  theme_minimal(base_size = 20) +
  annotate("point", x = col_cloud$SM[[nrow(col_cloud)]], y = col_cloud$SC[[nrow(col_cloud)]], shape = 1, size = 25) +
  labs(title = "Two dimensions of the column cloud.")

Interpretation

Smoke CA - interpretation

smoke_ca

 Principal inertias (eigenvalues):
           1        2        3       
Value      0.074759 0.010017 0.000414
Percentage 87.76%   11.76%   0.49%   


 Rows:
              SM      JM      SE     JE       SC
Mass     0.05699  0.0933  0.2642 0.4560  0.12953
ChiDist  0.21656  0.3569  0.3808 0.2400  0.21617
Inertia  0.00267  0.0119  0.0383 0.0263  0.00605
Dim. 1  -0.24054  0.9471 -1.3920 0.8520 -0.73546
Dim. 2  -1.93571 -2.4310 -0.1065 0.5769  0.78843


 Columns:
           none   light medium   heavy
Mass     0.3161 0.23316 0.3212  0.1295
ChiDist  0.3945 0.17400 0.1981  0.3551
Inertia  0.0492 0.00706 0.0126  0.0163
Dim. 1  -1.4385 0.36375 0.7180  1.0744
Dim. 2  -0.3047 1.40943 0.0735 -1.9760
smoke_ca$rowmass
[1] 0.0570 0.0933 0.2642 0.4560 0.1295
smoke_ca$rowdist
[1] 0.217 0.357 0.381 0.240 0.216
smoke_ca$rowinertia
[1] 0.00267 0.01188 0.03831 0.02627 0.00605

Let’s look at rowmass

Code
addmargins(smoke_mtx, 1) %>% 
  prop.table(1) %>% 
  print_matrix()
addmargins(smoke_mtx, 2) %>% 
  prop.table(2) %>% 
  print_matrix()
none light medium heavy
SM 0.364 0.182 0.273 0.182
JM 0.222 0.167 0.389 0.222
SE 0.490 0.196 0.235 0.078
JE 0.205 0.273 0.375 0.148
SC 0.400 0.240 0.280 0.080
Sum 0.316 0.233 0.321 0.130
none light medium heavy Sum
SM 0.066 0.044 0.048 0.08 0.057
JM 0.066 0.067 0.113 0.16 0.093
SE 0.410 0.222 0.194 0.16 0.264
JE 0.295 0.533 0.532 0.52 0.456
SC 0.164 0.133 0.113 0.08 0.130
smoke_ca$colmass
smoke_ca$rowmass
[1] 0.316 0.233 0.321 0.130
[1] 0.0570 0.0933 0.2642 0.4560 0.1295

Let’s look at rowdist

prop.table(smoke_mtx,1)["SM",]
smoke_ca$colmass
  none  light medium  heavy 
 0.364  0.182  0.273  0.182 
[1] 0.316 0.233 0.321 0.130
prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass
   none   light  medium   heavy 
 0.0476 -0.0513 -0.0485  0.0523 

Let’s look at rowdist

prop.table(smoke_mtx,1)["SM",]
smoke_ca$colmass
  none  light medium  heavy 
 0.364  0.182  0.273  0.182 
[1] 0.316 0.233 0.321 0.130
prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass
   none   light  medium   heavy 
 0.0476 -0.0513 -0.0485  0.0523 
(prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass)^2
   none   light  medium   heavy 
0.00226 0.00264 0.00235 0.00273 

Let’s look at rowdist

prop.table(smoke_mtx,1)["SM",]
smoke_ca$colmass
  none  light medium  heavy 
 0.364  0.182  0.273  0.182 
[1] 0.316 0.233 0.321 0.130
prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass
   none   light  medium   heavy 
 0.0476 -0.0513 -0.0485  0.0523 
(prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass)^2
   none   light  medium   heavy 
0.00226 0.00264 0.00235 0.00273 
# Euclidean distance
sqrt(sum((prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass)^2))
[1] 0.0999

Let’s look at rowdist

prop.table(smoke_mtx,1)["SM",]
smoke_ca$colmass
  none  light medium  heavy 
 0.364  0.182  0.273  0.182 
[1] 0.316 0.233 0.321 0.130
prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass
   none   light  medium   heavy 
 0.0476 -0.0513 -0.0485  0.0523 
(prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass)^2
   none   light  medium   heavy 
0.00226 0.00264 0.00235 0.00273 
(prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass)^2/smoke_ca$colmass
   none   light  medium   heavy 
0.00716 0.01131 0.00733 0.02110 
# Chi-squared distance
sqrt(sum((prop.table(smoke_mtx,1)["SM",]-smoke_ca$colmass)^2/smoke_ca$colmass))
[1] 0.217

Let’s look at rowdist

row_dists <- map_dbl(smoke_ca$rownames, function(row) {
  sqrt(sum((prop.table(smoke_mtx,1)[row,]-smoke_ca$colmass)^2/smoke_ca$colmass))
})
row_dists
[1] 0.217 0.357 0.381 0.240 0.216
smoke_ca$rowdist
[1] 0.217 0.357 0.381 0.240 0.216

Let’s look at rowinertia

smoke_ca$rowdist
[1] 0.217 0.357 0.381 0.240 0.216
smoke_ca$rowdist ^ 2
[1] 0.0469 0.1274 0.1450 0.0576 0.0467
smoke_ca$rowdist ^ 2 * smoke_ca$rowmass
[1] 0.00267 0.01188 0.03831 0.02627 0.00605
smoke_ca$rowinertia
[1] 0.00267 0.01188 0.03831 0.02627 0.00605

Reading inertias

smoke_ca

 Principal inertias (eigenvalues):
           1        2        3       
Value      0.074759 0.010017 0.000414
Percentage 87.76%   11.76%   0.49%   


 Rows:
              SM      JM      SE     JE       SC
Mass     0.05699  0.0933  0.2642 0.4560  0.12953
ChiDist  0.21656  0.3569  0.3808 0.2400  0.21617
Inertia  0.00267  0.0119  0.0383 0.0263  0.00605
Dim. 1  -0.24054  0.9471 -1.3920 0.8520 -0.73546
Dim. 2  -1.93571 -2.4310 -0.1065 0.5769  0.78843


 Columns:
           none   light medium   heavy
Mass     0.3161 0.23316 0.3212  0.1295
ChiDist  0.3945 0.17400 0.1981  0.3551
Inertia  0.0492 0.00706 0.0126  0.0163
Dim. 1  -1.4385 0.36375 0.7180  1.0744
Dim. 2  -0.3047 1.40943 0.0735 -1.9760
sum(smoke_ca$rowinertia)
[1] 0.0852
sum(smoke_ca$colinertia)
[1] 0.0852

Interpretation of summary()

smoke_sum <- summary(smoke_ca)
smoke_sum

Principal inertias (eigenvalues):

 dim    value      %   cum%   scree plot               
 1      0.074759  87.8  87.8  **********************   
 2      0.010017  11.8  99.5  ***                      
 3      0.000414   0.5 100.0                           
        -------- -----                                 
 Total: 0.085190 100.0                                 


Rows:
    name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
1 |   SM |   57  893   31 |  -66  92   3 | -194 800 214 |
2 |   JM |   93  991  139 |  259 526  84 | -243 465 551 |
3 |   SE |  264 1000  450 | -381 999 512 |  -11   1   3 |
4 |   JE |  456 1000  308 |  233 942 331 |   58  58 152 |
5 |   SC |  130  999   71 | -201 865  70 |   79 133  81 |

Columns:
    name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
1 | none |  316 1000  577 | -393 994 654 |  -30   6  29 |
2 | lght |  233  984   83 |   99 327  31 |  141 657 463 |
3 | medm |  321  983  148 |  196 982 166 |    7   1   2 |
4 | hevy |  130  995  192 |  294 684 150 | -198 310 506 |
round(smoke_ca$rowmass*1000)
round(smoke_ca$rowinertia/sum(smoke_ca$rowinertia)*1000)
round(smoke_ca$colinertia/sum(smoke_ca$colinertia)*1000)
[1]  57  93 264 456 130
[1]  31 139 450 308  71
[1] 577  83 148 192

:::

::::

Zooming in on rows

rows <- summary(smoke_ca)$rows
colnames(rows) <- c("row", "mass", "quality", "inertia",
                    paste0(rep(c("k", "cor", "ctr"), 2), rep(c(1, 2), each = 3)))
rows <- as_tibble(rows)
# left table
rows %>% print_matrix()
# right table
rows %>% select(row, quality, cor1, cor2) %>% 
  mutate(cors = cor1+cor2, qdiff = quality-cors) %>% 
  print_matrix()
row mass quality inertia k1 cor1 ctr1 k2 cor2 ctr2
SM 57 893 31 -66 92 3 -194 800 214
JM 93 991 139 259 526 84 -243 465 551
SE 264 1000 450 -381 999 512 -11 1 3
JE 456 1000 308 233 942 331 58 58 152
SC 130 999 71 -201 865 70 79 133 81
row quality cor1 cor2 cors qdiff
SM 893 92 800 892 1
JM 991 526 465 991 0
SE 1000 999 1 1000 0
JE 1000 942 58 1000 0
SC 999 865 133 998 1

Let’s see that plot again?

Code
plot(smoke_ca)

Checking residuals

smoke_chisq <- chisq.test(smoke)
smoke_chisq

    Pearson's Chi-squared test

data:  smoke
X-squared = 16, df = 12, p-value = 0.2
print_matrix(smoke_chisq$expected)
none light medium heavy
SM 3.48 2.56 3.53 1.42
JM 5.69 4.20 5.78 2.33
SE 16.12 11.89 16.38 6.61
JE 27.81 20.52 28.27 11.40
SC 7.90 5.83 8.03 3.24
print_matrix(smoke_chisq$residuals)
none light medium heavy
SM 0.281 -0.353 -0.284 0.482
JM -0.708 -0.584 0.506 1.093
SE 2.212 -0.548 -1.083 -1.014
JE -1.861 0.769 0.890 0.474
SC 0.747 0.071 -0.364 -0.688

Linguistic example

Contingency table

Code
# get corpus documents
corpus_folder <- here::here("studies", "_corpora", "clinton_trump")
fnames <- get_fnames(corpus_folder)
short_fnames <- short_names(fnames)
# get possible features
stop_list <- read_types(here::here("studies", "assets", "ca-trump-clinton", "stop_list.txt"))
features <- freqlist(fnames) %>% drop_types(stop_list) %>%
  keep_pos(1:150) %>% as_types()
# create contingency table (a matrix)
d <- map(setNames(fnames, short_fnames), ~ freqlist(.x)[features]) %>%
  bind_cols() %>% data.frame(row.names = features) %>% 
  as.matrix() %>% t() %>% drop_empty_rc()
kbl(d[1:10, 1:10]) %>% kable_paper(font_size = 20)
again ago also america american americans applause are audience back
Clinton_2016.07.28 4 5 6 24 3 11 113 36 6 6
Clinton_2016.07.29 2 3 5 13 3 1 72 18 3 2
Clinton_2016.08.01 0 1 2 7 2 4 22 11 1 3
Clinton_2016.08.05 4 1 9 11 10 10 11 37 0 7
Clinton_2016.08.10 0 0 5 6 4 3 41 19 0 4
Clinton_2016.08.11 7 1 11 25 13 15 51 40 0 16
Clinton_2016.08.15 2 4 3 19 9 5 52 30 8 16
Clinton_2016.08.16 3 0 4 10 2 3 41 20 2 6
Clinton_2016.08.17 3 2 5 12 6 12 64 34 0 2
Clinton_2016.08.25 6 1 3 19 10 5 18 17 1 2

Correspondence Analysis

d_ca <- ca(d)
d_ca

 Principal inertias (eigenvalues):
           1        2        3        4        5      6        7       
Value      0.053657 0.040702 0.022246 0.019935 0.0143 0.013147 0.011372
Percentage 14.09%   10.69%   5.84%    5.23%    3.75%  3.45%    2.99%   
           8        9        10       11       12       13       14      
Value      0.010335 0.008489 0.007962 0.007012 0.006627 0.006017 0.005841
Percentage 2.71%    2.23%    2.09%    1.84%    1.74%    1.58%    1.53%   
           15       16       17      18       19       20       21      
Value      0.005661 0.005539 0.00512 0.004972 0.004851 0.004673 0.004558
Percentage 1.49%    1.45%    1.34%   1.31%    1.27%    1.23%    1.2%    
           22       23       24       25       26      27       28      
Value      0.004145 0.004037 0.003968 0.003885 0.00385 0.003568 0.003367
Percentage 1.09%    1.06%    1.04%    1.02%    1.01%   0.94%    0.88%   
           29       30       31       32       33       34       35      
Value      0.003301 0.003141 0.003067 0.002921 0.002839 0.002717 0.002664
Percentage 0.87%    0.82%    0.81%    0.77%    0.75%    0.71%    0.7%    
           36      37       38       39       40       41       42      
Value      0.00258 0.002534 0.002443 0.002341 0.002303 0.002214 0.002181
Percentage 0.68%   0.67%    0.64%    0.61%    0.6%     0.58%    0.57%   
           43       44       45       46       47       48       49      
Value      0.002148 0.002031 0.001955 0.001873 0.001861 0.001794 0.001711
Percentage 0.56%    0.53%    0.51%    0.49%    0.49%    0.47%    0.45%   
           50       51       52       53       54       55       56      
Value      0.001662 0.001653 0.001595 0.001496 0.001442 0.001406 0.001361
Percentage 0.44%    0.43%    0.42%    0.39%    0.38%    0.37%    0.36%   
           57       58       59       60       61       62       63      
Value      0.001311 0.001267 0.001257 0.001183 0.001174 0.001111 0.001072
Percentage 0.34%    0.33%    0.33%    0.31%    0.31%    0.29%    0.28%   
           64       65       66      67       68       69       70      
Value      0.001038 0.001011 0.00097 0.000924 0.000905 0.000842 0.000825
Percentage 0.27%    0.27%    0.25%   0.24%    0.24%    0.22%    0.22%   
           71       72       73       74       75       76       77      
Value      0.000774 0.000768 0.000747 0.000718 0.000704 0.000671 0.000659
Percentage 0.2%     0.2%     0.2%     0.19%    0.18%    0.18%    0.17%   
           78       79       80       81       82       83       84     
Value      0.000605 0.000595 0.000568 0.000536 0.000505 0.000481 0.00045
Percentage 0.16%    0.16%    0.15%    0.14%    0.13%    0.13%    0.12%  
           85       86       87       88       89       90       91      
Value      0.000431 0.000422 0.000389 0.000381 0.000343 0.000335 0.000315
Percentage 0.11%    0.11%    0.1%     0.1%     0.09%    0.09%    0.08%   
           92       93       94       95       96       97       98      
Value      0.000292 0.000275 0.000265 0.000243 0.000238 0.000217 0.000205
Percentage 0.08%    0.07%    0.07%    0.06%    0.06%    0.06%    0.05%   
           99       100      101      102      103      104      105     
Value      0.000183 0.000173 0.000164 0.000155 0.000152 0.000148 0.000128
Percentage 0.05%    0.05%    0.04%    0.04%    0.04%    0.04%    0.03%   
           106      107      108     109     110     111     112   113    
Value      0.000121 0.000113 8.9e-05 7.4e-05 6.8e-05 5.9e-05 5e-05 4.5e-05
Percentage 0.03%    0.03%    0.02%   0.02%   0.02%   0.02%   0.01% 0.01%  
           114     115     116 117
Value      3.7e-05 2.3e-05 0   0  
Percentage 0.01%   0.01%   0%  0% 


 Rows:
        Clinton_2016.07.28 Clinton_2016.07.29 Clinton_2016.08.01
Mass               0.00787            0.00516            0.00225
ChiDist            0.72854            0.65694            0.97131
Inertia            0.00418            0.00223            0.00213
Dim. 1            -2.02389           -1.16774           -1.77022
Dim. 2             0.31847            0.87857            1.00231
        Clinton_2016.08.05 Clinton_2016.08.10 Clinton_2016.08.11
Mass               0.00841            0.00329            0.00770
ChiDist            0.67367            0.84070            0.85071
Inertia            0.00382            0.00233            0.00557
Dim. 1            -1.11288           -2.12166           -2.06907
Dim. 2             1.52271            1.01558            0.48095
        Clinton_2016.08.15 Clinton_2016.08.16 Clinton_2016.08.17
Mass               0.01033            0.00465            0.00613
ChiDist            0.62627            0.68516            0.77281
Inertia            0.00405            0.00218            0.00366
Dim. 1            -0.61023           -1.10783           -1.82868
Dim. 2             1.32985            0.92825            1.01634
        Clinton_2016.08.25 Clinton_2016.08.31 Clinton_2016.09.05.A
Mass               0.00434            0.00473              0.00946
ChiDist            0.87991            0.97231              0.62874
Inertia            0.00336            0.00448              0.00374
Dim. 1            -1.67873           -1.99464             -1.27886
Dim. 2             1.23535            0.29216              1.19872
        Clinton_2016.09.05.B Clinton_2016.09.06 Clinton_2016.09.08.A
Mass                 0.00517            0.00797              0.00286
ChiDist              0.71890            0.55881              1.05714
Inertia              0.00267            0.00249              0.00320
Dim. 1              -1.60773           -1.16248             -0.65555
Dim. 2               1.46085            0.75815              1.49847
        Clinton_2016.09.08.B Clinton_2016.09.08.C Clinton_2016.09.29
Mass                 0.00419              0.00521            0.00249
ChiDist              0.81674              0.63028            0.93480
Inertia              0.00279              0.00207            0.00217
Dim. 1              -1.81649             -1.21676           -1.38177
Dim. 2               0.81885              1.31835            1.19489
        Clinton_2016.09.30 Clinton_2016.10.03 Clinton_2016.10.24
Mass               0.00509            0.00659            0.01141
ChiDist            0.78489            0.63694            0.59666
Inertia            0.00313            0.00267            0.00406
Dim. 1            -2.22845           -1.23714           -1.62939
Dim. 2             0.37197            1.19205            0.83067
        Clinton_2016.10.26 Clinton_2016.10.31.A Clinton_2016.10.31.B
Mass               0.00473              0.00458              0.00462
ChiDist            0.71761              0.90953              0.74975
Inertia            0.00244              0.00379              0.00260
Dim. 1            -1.58816             -1.75994             -1.90898
Dim. 2             1.08970              1.58702              1.38698
        Clinton_2016.11.01.A Clinton_2016.11.01.B Clinton_2016.11.04.A
Mass                 0.00605              0.00342              0.00607
ChiDist              0.74790              1.02463              0.61072
Inertia              0.00338              0.00359              0.00226
Dim. 1              -1.29248             -2.24480             -1.38148
Dim. 2               1.37490              0.88133              0.77066
        Clinton_2016.11.04.B Clinton_2016.11.05 Clinton_2016.11.06.A
Mass                 0.00596            0.00130              0.00429
ChiDist              0.70280            1.13518              0.82288
Inertia              0.00294            0.00168              0.00290
Dim. 1              -1.31183           -1.94122             -2.54299
Dim. 2               1.57636            1.22924              0.89944
        Clinton_2016.11.06.B Clinton_2016.11.07.A Clinton_2016.11.07.B
Mass                 0.00470              0.00467              0.00580
ChiDist              0.83614              1.27873              0.68038
Inertia              0.00328              0.00763              0.00268
Dim. 1              -2.06126             -1.67631             -1.75604
Dim. 2               1.26015              1.23829              1.08815
        Clinton_2016.11.07.C Clinton_2016.11.08 Clinton_2016.11.09
Mass                 0.00236            0.00228            0.00291
ChiDist              1.11338            1.16716            0.96174
Inertia              0.00292            0.00310            0.00269
Dim. 1              -2.83205           -2.98628           -1.83965
Dim. 2               0.78706            0.84589            0.41832
        Trump_2016.07.22 Trump_2016.07.25 Trump_2016.07.26 Trump_2016.07.27.A
Mass             0.01219          0.01690          0.00424            0.01707
ChiDist          0.69509          0.47903          0.78165            0.74738
Inertia          0.00589          0.00388          0.00259            0.00954
Dim. 1           0.69341          0.79917         -0.73954            1.16718
Dim. 2           2.27359          1.00803         -0.70112            1.73993
        Trump_2016.07.27.B Trump_2016.08.01 Trump_2016.08.02 Trump_2016.08.04
Mass               0.01936          0.01814          0.02013          0.01438
ChiDist            0.45108          0.59678          0.52218          0.42709
Inertia            0.00394          0.00646          0.00549          0.00262
Dim. 1             0.97719          1.26662          1.50007          0.68727
Dim. 2             1.06519          0.76711          0.54820          0.61284
        Trump_2016.08.05 Trump_2016.08.08 Trump_2016.08.10 Trump_2016.08.12.A
Mass             0.01671          0.00668          0.01773            0.01699
ChiDist          0.44280          1.07661          0.53492            0.44378
Inertia          0.00328          0.00774          0.00507            0.00335
Dim. 1           0.64611         -1.54888          1.45535            1.10950
Dim. 2           0.69654         -2.21025          0.88880            0.70871
        Trump_2016.08.12.B Trump_2016.08.15 Trump_2016.08.16 Trump_2016.08.17
Mass               0.01563          0.00589          0.00616          0.01222
ChiDist            0.48574          1.00223          0.68532          0.67146
Inertia            0.00369          0.00592          0.00290          0.00551
Dim. 1             1.28463         -1.24694         -1.13363          0.48849
Dim. 2             0.17365         -0.14256         -1.57701          1.19286
        Trump_2016.08.18 Trump_2016.08.19 Trump_2016.08.22 Trump_2016.08.23
Mass             0.00646          0.00728          0.00785          0.00729
ChiDist          0.71089          0.67168          0.51183          0.91938
Inertia          0.00327          0.00329          0.00206          0.00616
Dim. 1          -1.47111         -0.67781         -0.43326         -0.80832
Dim. 2          -1.75252         -1.90305         -1.24625         -1.99774
        Trump_2016.08.24.A Trump_2016.08.24.B Trump_2016.08.25 Trump_2016.08.30
Mass               0.01321            0.00721          0.00782          0.00732
ChiDist            0.45717            0.70808          0.61256          0.54672
Inertia            0.00276            0.00362          0.00293          0.00219
Dim. 1             0.30969           -1.06200         -0.35949         -0.48429
Dim. 2            -1.39983           -1.93394         -1.48243         -0.99443
        Trump_2016.08.31 Trump_2016.09.01.A Trump_2016.09.01.B
Mass             0.01058            0.00495            0.00262
ChiDist          0.52025            0.75350            1.00512
Inertia          0.00286            0.00281            0.00265
Dim. 1          -0.31778           -0.33167           -1.74930
Dim. 2          -0.68690           -2.01326           -1.75483
        Trump_2016.09.06.A Trump_2016.09.06.B Trump_2016.09.07.A
Mass               0.01347            0.00939            0.00451
ChiDist            0.56006            0.43420            0.90409
Inertia            0.00422            0.00177            0.00369
Dim. 1             0.98309            0.06941           -0.93760
Dim. 2             1.07593           -0.96084           -1.17754
        Trump_2016.09.07.B Trump_2016.09.08 Trump_2016.09.09.A
Mass               0.00625          0.00616            0.00934
ChiDist            0.78935          0.67009            0.46204
Inertia            0.00390          0.00277            0.00199
Dim. 1             0.81699          0.02700            0.37344
Dim. 2             1.15679         -0.13474           -0.03671
        Trump_2016.09.09.B Trump_2016.09.09 Trump_2016.09.12.A
Mass               0.00329          0.00934            0.00912
ChiDist            0.76311          0.46204            0.51056
Inertia            0.00192          0.00199            0.00238
Dim. 1             0.34694          0.37344           -0.19505
Dim. 2            -1.12001         -0.03671           -0.73983
        Trump_2016.09.12.B Trump_2016.09.13.A Trump_2016.09.13.B
Mass               0.00309            0.00688            0.00314
ChiDist            0.97906            0.58271            1.62463
Inertia            0.00296            0.00233            0.00830
Dim. 1            -1.14776           -0.14949           -1.89710
Dim. 2            -1.07806           -1.45653           -0.40451
        Trump_2016.09.13 Trump_2016.09.16 Trump_2016.09.17 Trump_2016.09.29
Mass             0.00688          0.00957          0.00444          0.00790
ChiDist          0.58271          0.48383          0.79010          0.52557
Inertia          0.00233          0.00224          0.00277          0.00218
Dim. 1          -0.14949          0.25199         -0.73154          0.20163
Dim. 2          -1.45653         -0.73164          0.06891         -0.95380
        Trump_2016.09.30 Trump_2016.10.03.A Trump_2016.10.03.B Trump_2016.10.05
Mass             0.01137            0.01270            0.01131          0.01167
ChiDist          0.53608            0.69566            0.46560          0.37763
Inertia          0.00327            0.00614            0.00245          0.00166
Dim. 1           0.07976            0.54541           -0.16163         -0.07123
Dim. 2          -1.11114            0.82933           -0.54760         -0.67281
        Trump_2016.10.06 Trump_2016.10.10.A Trump_2016.10.10.B Trump_2016.10.11
Mass             0.01621            0.01286            0.01505          0.01321
ChiDist          0.46661            0.46752            0.41148          0.39338
Inertia          0.00353            0.00281            0.00255          0.00204
Dim. 1           0.92687            0.67948            0.93722          0.37293
Dim. 2           1.07343           -0.38991           -0.18854         -0.30168
        Trump_2016.10.12 Trump_2016.10.13 Trump_2016.10.14.A Trump_2016.10.14.B
Mass              0.0142          0.00725            0.00986            0.01447
ChiDist           0.4966          0.63648            0.44339            0.40301
Inertia           0.0035          0.00294            0.00194            0.00235
Dim. 1            0.6583         -0.45674            0.81191            0.68835
Dim. 2           -0.0311         -0.48487           -0.35958           -0.13796
        Trump_2016.10.17 Trump_2016.10.18 Trump_2016.10.21.A Trump_2016.10.21.B
Mass             0.00999          0.00936            0.00600            0.01024
ChiDist          0.75894          0.48127            0.75496            0.51578
Inertia          0.00575          0.00217            0.00342            0.00272
Dim. 1           0.28669          0.08980            1.10636            0.52937
Dim. 2          -0.68317         -0.71455            0.92033           -0.87859
        Trump_2016.10.21.C Trump_2016.10.27 Trump_2016.10.28 Trump_2016.10.31
Mass               0.00641          0.00722          0.00986          0.01258
ChiDist            0.60011          0.53977          0.50616          0.45557
Inertia            0.00231          0.00210          0.00253          0.00261
Dim. 1            -0.14318          0.22554          0.55159          0.25615
Dim. 2            -1.44395         -0.87037         -0.37745         -0.85616
        Trump_2016.11.01.A Trump_2016.11.01.B Trump_2016.11.02.A
Mass               0.00875            0.00403            0.00888
ChiDist            0.47734            0.81191            0.57400
Inertia            0.00199            0.00266            0.00293
Dim. 1            -0.21015           -0.63058            0.24179
Dim. 2            -1.17654           -0.96360           -1.31010
        Trump_2016.11.02.B Trump_2016.11.02.C Trump_2016.11.03.A
Mass               0.01078            0.00696            0.01122
ChiDist            0.44223            0.45933            0.48062
Inertia            0.00211            0.00147            0.00259
Dim. 1             0.43943            0.25498            0.33105
Dim. 2            -0.38575           -0.71532           -0.89609
        Trump_2016.11.03.B Trump_2016.11.04.A Trump_2016.11.04.B
Mass               0.01030            0.01010            0.00943
ChiDist            0.40904            0.50267            0.42586
Inertia            0.00172            0.00255            0.00171
Dim. 1             0.59619            0.41608            0.23570
Dim. 2            -0.74128           -0.41939           -0.49207
        Trump_2016.11.04.C Trump_2016.11.05.A Trump_2016.11.05.B
Mass               0.01235            0.01250            0.00973
ChiDist            0.46700            0.44782            0.53837
Inertia            0.00269            0.00251            0.00282
Dim. 1             0.86480            0.81109            0.00957
Dim. 2            -0.35621           -0.44001           -0.72408
        Trump_2016.11.06 Trump_2016.11.07.A Trump_2016.11.07.B
Mass             0.00769             0.0115            0.01174
ChiDist          0.54634             0.5817            0.45662
Inertia          0.00230             0.0039            0.00245
Dim. 1           0.55748             0.4638            0.69168
Dim. 2          -0.71745            -0.5945           -0.50859
        Trump_2016.11.07.C Trump_2016.11.07.D Trump_2016.11.08 Trump_2016.11.09
Mass               0.00684            0.00934          0.00819          0.00307
ChiDist            0.70994            0.46062          0.54275          0.95258
Inertia            0.00345            0.00198          0.00241          0.00279
Dim. 1             0.32096           -0.11529          0.12273         -0.83664
Dim. 2            -1.13683           -0.71337         -1.09737          0.50210


 Columns:
           again      ago     also  america american americans applause
Mass     0.00520  0.00239  0.00441  0.00728  0.00623   0.00298   0.0417
ChiDist  0.59271  0.67304  0.69401  0.74844  1.00224   1.01361   0.5077
Inertia  0.00183  0.00108  0.00213  0.00407  0.00626   0.00306   0.0107
Dim. 1  -0.04653  1.42091 -1.32777 -2.51700 -1.95816  -3.08274  -1.3551
Dim. 2  -1.91206 -0.14646 -1.12235 -0.39190 -2.55831  -0.80550  -0.8807
             are audience     back      bad     been     being  believe
Mass     0.02665  0.00398  0.00789  0.00337  0.00913  0.002714  0.00574
ChiDist  0.27224  1.31493  0.45793  0.74207  0.40025  0.580570  0.66284
Inertia  0.00198  0.00688  0.00165  0.00186  0.00146  0.000915  0.00252
Dim. 1  -0.29785 -0.82076  0.16778  1.97468  0.01503 -0.143460 -1.34014
Dim. 2  -0.33262 -3.10009 -0.65682 -0.55942 -0.16116 -0.042899  0.28557
          better       big   booing    bring    build campaign   can't     care
Mass     0.00333  0.004299  0.00398  0.00304  0.00310  0.00319 0.00413  0.00393
ChiDist  0.56943  0.455725  1.32978  0.70156  0.67447  0.94575 0.57161  0.92892
Inertia  0.00108  0.000893  0.00704  0.00150  0.00141  0.00286 0.00135  0.00339
Dim. 1  -0.32014  0.674739  0.13660 -0.25543  0.30632 -2.23064 0.45155 -0.40253
Dim. 2  -0.03827 -0.033457 -3.15327 -1.65955 -0.88945  0.53180 0.57872 -0.24827
          change  clinton    come countries  country      day     deal     did
Mass     0.00265  0.00995 0.00421   0.00244  0.01409  0.00310  0.00289 0.00494
ChiDist  1.03829  0.66937 0.57192   0.70936  0.41172  0.68683  0.79254 0.56255
Inertia  0.00286  0.00446 0.00138   0.00123  0.00239  0.00146  0.00181 0.00156
Dim. 1  -0.63910 -0.95596 0.46960   0.68959 -0.45816 -0.69089  1.22428 0.55516
Dim. 2  -1.89876 -0.76519 0.11646  -1.12318 -1.28842  0.97911 -0.84514 1.17934
         didn't  doesn't   doing   don't   donald     done election    even
Mass    0.00293  0.00272 0.00434 0.01298  0.00429  0.00281  0.00227 0.00488
ChiDist 0.70625  0.70162 0.53789 0.42538  1.01695  0.76950  1.33125 0.49803
Inertia 0.00146  0.00134 0.00126 0.00235  0.00444  0.00166  0.00401 0.00121
Dim. 1  1.03604 -0.09742 1.01116 1.21532 -2.10531 -0.75504 -3.41121 0.19051
Dim. 2  1.08141  0.65338 0.25113 0.45578  2.23348  0.86540  2.17855 0.39306
            ever everybody    folks     four      get     give      go    going
Mass     0.00465   0.00344  0.00403  0.00234  0.01169  0.00271 0.00637  0.03682
ChiDist  0.52537   0.65586  0.68399  0.74628  0.34888  0.74148 0.54306  0.39574
Inertia  0.00128   0.00148  0.00189  0.00130  0.00142  0.00149 0.00188  0.00577
Dim. 1   0.21894  -0.65236  1.49939  0.75926 -0.18967 -0.18898 0.08363  1.06378
Dim. 2  -1.24393   0.57027 -1.15309 -1.40534  0.51270  0.90447 1.38814 -0.63649
           gonna    good      got government    great     had   happen      has
Mass     0.00261 0.00590  0.00708    0.00238  0.01249 0.00674  0.00326  0.00903
ChiDist  1.97901 0.50567  0.61873    0.89879  0.42992 0.59454  0.65432  0.53272
Inertia  0.01024 0.00151  0.00271    0.00193  0.00231 0.00238  0.00140  0.00256
Dim. 1   1.74616 0.20730 -0.22118   -0.38390  0.75507 0.11124  0.97980 -1.05348
Dim. 2  -0.72854 0.99638  1.39320   -2.75894 -0.27813 1.57321 -1.20735  0.18450
           he's     help  hillary    i'll     i'm     i've important inaudible
Mass    0.00369  0.00231  0.01102 0.00237 0.00949  0.00441   0.00238   0.00301
ChiDist 0.87298  1.14192  0.53795 0.67733 0.43234  0.64769   0.71351   2.50099
Inertia 0.00281  0.00301  0.00319 0.00109 0.00177  0.00185   0.00121   0.01881
Dim. 1  0.52917 -3.53872  0.00955 0.83712 0.32248 -0.23131  -0.99611   0.12751
Dim. 2  2.59097  1.73090 -1.46143 0.63621 0.35250  1.52470   0.56070   1.38804
              is     isis     it's      job     jobs     just     keep    know
Mass     0.03485  0.00246  0.01963  0.00301  0.00926  0.01176  0.00237 0.01936
ChiDist  0.28776  1.37982  0.33181  0.79021  0.67097  0.34990  0.81525 0.37735
Inertia  0.00288  0.00468  0.00216  0.00188  0.00417  0.00144  0.00158 0.00276
Dim. 1  -0.70550  0.56684  0.92092 -0.56673 -0.33775 -0.19619 -0.96505 0.32623
Dim. 2   0.24544 -0.23310 -0.11132  0.08972 -2.12776  0.87747 -0.18902 1.41148
        laughter     let    like    look     lot     love     made     make
Mass     0.00235 0.00334 0.01013 0.00658 0.00591  0.00374  0.00279  0.00860
ChiDist  1.07469 0.61233 0.34748 0.62405 0.52565  0.70683  0.68018  0.47955
Inertia  0.00271 0.00125 0.00122 0.00256 0.00163  0.00187  0.00129  0.00198
Dim. 1   0.12941 0.07260 0.78828 1.24481 0.80809  0.52054 -0.15455 -1.25143
Dim. 2   2.16122 0.13605 0.15329 0.70219 1.22086 -0.01538 -0.06180  0.16861
           mean   mexico military million    money     need      new      not
Mass    0.00355  0.00230  0.00245 0.00249  0.00398  0.00362  0.00638  0.01767
ChiDist 0.82322  0.94229  1.35259 0.85416  0.61222  0.78488  0.83331  0.29258
Inertia 0.00241  0.00204  0.00449 0.00182  0.00149  0.00223  0.00443  0.00151
Dim. 1  1.69345  1.91787  0.18755 0.14550  1.39654 -1.44421 -0.97159 -0.60096
Dim. 2  1.76899 -1.36846 -0.48560 0.32542 -0.44203  1.00628 -0.92025  0.43422
           obama      ok     only     out      pay  people  percent      ph
Mass     0.00288 0.00363  0.00326  0.0116  0.00308 0.02483  0.00455 0.00232
ChiDist  0.82744 0.92138  0.73986  0.3476  0.86535 0.27217  0.70893 1.29998
Inertia  0.00197 0.00308  0.00179  0.0014  0.00231 0.00184  0.00229 0.00392
Dim. 1   0.38621 2.77864 -1.13106 -0.1124 -1.02251 0.07947  0.88837 1.52291
Dim. 2  -0.33202 1.50829 -1.05026  0.4996  1.00648 0.09766 -2.07962 1.61024
           place     plan president       put   really remember   right    said
Mass     0.00227  0.00237   0.00591  0.003444  0.00565  0.00318 0.01144 0.01234
ChiDist  0.69791  1.07109   0.80612  0.521433  0.61536  0.71638 0.37559 0.56708
Inertia  0.00110  0.00272   0.00384  0.000936  0.00214  0.00163 0.00161 0.00397
Dim. 1  -0.05062 -1.55305  -2.08299 -0.392729 -0.55240  0.28864 0.86696 1.18909
Dim. 2  -0.23084 -1.41184   1.70011 -0.149998  1.89038 -1.08873 0.17230 1.61726
            say     see     seen      she    she's    state   states     stop
Mass    0.00847 0.00582  0.00238  0.01542  0.00367  0.00411  0.00449  0.00235
ChiDist 0.37242 0.50491  0.76344  0.57268  0.73651  0.68547  0.49413  0.78727
Inertia 0.00118 0.00148  0.00138  0.00506  0.00199  0.00193  0.00110  0.00145
Dim. 1  0.60954 0.68700  0.37797  0.90144  1.54675 -0.61681 -0.09087  0.69153
Dim. 2  0.65385 0.91515 -0.17770 -1.18574 -0.69465 -1.31118 -0.51880 -1.66137
           take     talk      tax     tell    thank  that's there's    these
Mass    0.00571  0.00238  0.00225  0.00549  0.00881 0.01031 0.00228  0.00734
ChiDist 0.46795  0.83659  1.36466  0.47710  0.75745 0.37205 0.73098  0.51526
Inertia 0.00125  0.00167  0.00418  0.00125  0.00505 0.00143 0.00122  0.00195
Dim. 1  0.54986 -0.31465 -1.08180 -0.05398 -1.08654 0.19579 0.28661  0.67819
Dim. 2  0.00448  1.34102 -0.33456  0.55411 -0.92050 0.48380 0.54697 -0.42013
         they're   thing   things   think    those     time together      too
Mass     0.00977 0.00321 0.003849 0.00900  0.00454  0.00660  0.00307  0.00231
ChiDist  0.62821 0.65050 0.503108 0.51260  0.57317  0.45555  1.21279  0.78833
Inertia  0.00386 0.00136 0.000974 0.00237  0.00149  0.00137  0.00451  0.00144
Dim. 1   2.14070 1.26334 0.559702 0.42815 -1.18586 -0.29843 -4.07737 -0.99743
Dim. 2  -0.06408 1.27331 0.620920 1.61146  0.23093 -0.24678  1.51046  0.36597
           trade    trump   united       up     very     vote     wall     want
Mass     0.00346  0.01794  0.00379  0.01013  0.01174  0.00471  0.00311  0.01230
ChiDist  0.94017  0.59361  0.60364  0.35919  0.54847  0.89731  0.86193  0.47207
Inertia  0.00305  0.00632  0.00138  0.00131  0.00353  0.00379  0.00231  0.00274
Dim. 1   1.18794  0.32062 -0.44590 -0.31289  0.78273 -1.42633  1.06967 -0.65314
Dim. 2  -1.90379 -0.04606 -0.91234  0.59942 -0.35590 -0.48455 -2.04138  0.88367
           wants     was     way    we'll    we're     well     were   what's
Mass     0.00283 0.01763 0.00633  0.00258  0.02226  0.00521  0.00554  0.00357
ChiDist  0.64370 0.47071 0.37498  0.81727  0.44595  0.65637  0.63980  0.59124
Inertia  0.00117 0.00391 0.00089  0.00172  0.00443  0.00224  0.00227  0.00125
Dim. 1   0.55184 0.35683 0.56292  0.86412  1.07606 -0.15334 -0.32015  1.46406
Dim. 2  -0.77502 1.40292 0.12552 -1.16637 -0.54869  2.18059  0.97466 -0.12975
             why      win     work  working    world    years  you're     your
Mass     0.00339  0.00437  0.00482  0.00265  0.00444  0.00598 0.00457  0.01139
ChiDist  0.65960  0.84503  1.02405  0.89373  0.52063  0.45065 0.60997  0.47686
Inertia  0.00147  0.00312  0.00505  0.00212  0.00120  0.00121 0.00170  0.00259
Dim. 1  -0.47816  1.28319 -3.13882 -2.07193 -0.36458  0.39163 1.03397 -0.91277
Dim. 2   0.74921 -1.31044  1.11788  0.40909 -0.48495 -0.53551 0.52202 -0.65435
summary(d_ca)

Principal inertias (eigenvalues):

 dim    value      %   cum%   scree plot               
 1      0.053657  14.1  14.1  ****                     
 2      0.040702  10.7  24.8  ***                      
 3      0.022246   5.8  30.6  *                        
 4      0.019935   5.2  35.8  *                        
 5      0.014300   3.8  39.6  *                        
 6      0.013147   3.5  43.1  *                        
 7      0.011372   3.0  46.0  *                        
 8      0.010335   2.7  48.8  *                        
 9      0.008489   2.2  51.0  *                        
 10     0.007962   2.1  53.1  *                        
 11     0.007012   1.8  54.9                           
 12     0.006627   1.7  56.7                           
 13     0.006017   1.6  58.2                           
 14     0.005841   1.5  59.8                           
 15     0.005661   1.5  61.3                           
 16     0.005539   1.5  62.7                           
 17     0.005120   1.3  64.1                           
 18     0.004972   1.3  65.4                           
 19     0.004851   1.3  66.6                           
 20     0.004673   1.2  67.9                           
 21     0.004558   1.2  69.1                           
 22     0.004145   1.1  70.1                           
 23     0.004037   1.1  71.2                           
 24     0.003968   1.0  72.2                           
 25     0.003885   1.0  73.3                           
 26     0.003850   1.0  74.3                           
 27     0.003568   0.9  75.2                           
 28     0.003367   0.9  76.1                           
 29     0.003301   0.9  77.0                           
 30     0.003141   0.8  77.8                           
 31     0.003067   0.8  78.6                           
 32     0.002921   0.8  79.4                           
 33     0.002839   0.7  80.1                           
 34     0.002717   0.7  80.8                           
 35     0.002664   0.7  81.5                           
 36     0.002580   0.7  82.2                           
 37     0.002534   0.7  82.9                           
 38     0.002443   0.6  83.5                           
 39     0.002341   0.6  84.1                           
 40     0.002303   0.6  84.7                           
 41     0.002214   0.6  85.3                           
 42     0.002181   0.6  85.9                           
 43     0.002148   0.6  86.4                           
 44     0.002031   0.5  87.0                           
 45     0.001955   0.5  87.5                           
 46     0.001873   0.5  88.0                           
 47     0.001861   0.5  88.5                           
 48     0.001794   0.5  88.9                           
 49     0.001711   0.4  89.4                           
 50     0.001662   0.4  89.8                           
 51     0.001653   0.4  90.3                           
 52     0.001595   0.4  90.7                           
 53     0.001496   0.4  91.1                           
 54     0.001442   0.4  91.4                           
 55     0.001406   0.4  91.8                           
 56     0.001361   0.4  92.2                           
 57     0.001311   0.3  92.5                           
 58     0.001267   0.3  92.9                           
 59     0.001257   0.3  93.2                           
 60     0.001183   0.3  93.5                           
 61     0.001174   0.3  93.8                           
 62     0.001111   0.3  94.1                           
 63     0.001072   0.3  94.4                           
 64     0.001038   0.3  94.6                           
 65     0.001011   0.3  94.9                           
 66     0.000970   0.3  95.2                           
 67     0.000924   0.2  95.4                           
 68     0.000905   0.2  95.6                           
 69     0.000842   0.2  95.9                           
 70     0.000825   0.2  96.1                           
 71     0.000774   0.2  96.3                           
 72     0.000768   0.2  96.5                           
 73     0.000747   0.2  96.7                           
 74     0.000718   0.2  96.9                           
 75     0.000704   0.2  97.1                           
 76     0.000671   0.2  97.2                           
 77     0.000659   0.2  97.4                           
 78     0.000605   0.2  97.6                           
 79     0.000595   0.2  97.7                           
 80     0.000568   0.1  97.9                           
 81     0.000536   0.1  98.0                           
 82     0.000505   0.1  98.1                           
 83     0.000481   0.1  98.3                           
 84     0.000450   0.1  98.4                           
 85     0.000431   0.1  98.5                           
 86     0.000422   0.1  98.6                           
 87     0.000389   0.1  98.7                           
 88     0.000381   0.1  98.8                           
 89     0.000343   0.1  98.9                           
 90     0.000335   0.1  99.0                           
 91     0.000315   0.1  99.1                           
 92     0.000292   0.1  99.2                           
 93     0.000275   0.1  99.2                           
 94     0.000265   0.1  99.3                           
 95     0.000243   0.1  99.4                           
 96     0.000238   0.1  99.4                           
 97     0.000217   0.1  99.5                           
 98     0.000205   0.1  99.5                           
 99     0.000183   0.0  99.6                           
 100    0.000173   0.0  99.6                           
 101    0.000164   0.0  99.7                           
 102    0.000155   0.0  99.7                           
 103    0.000152   0.0  99.7                           
 104    0.000148   0.0  99.8                           
 105    0.000128   0.0  99.8                           
 106    0.000121   0.0  99.9                           
 107    0.000113   0.0  99.9                           
 108    8.9e-050   0.0  99.9                           
 109    7.4e-050   0.0  99.9                           
 110    6.8e-050   0.0  99.9                           
 111    5.9e-050   0.0 100.0                           
 112    5e-05000   0.0 100.0                           
 113    4.5e-050   0.0 100.0                           
 114    3.7e-050   0.0 100.0                           
 115    2.3e-050   0.0 100.0                           
 116    00000000   0.0 100.0                           
 117    00000000   0.0 100.0                           
        -------- -----                                 
 Total: 0.380871 100.0                                 


Rows:
             name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
1   |  C_20160728 |    8  422   11 | -469 414  32 |   64   8   1 |
2   |  C_20160729 |    5  242    6 | -270 170   7 |  177  73   4 |
3   |  C_20160801 |    2  222    6 | -410 178   7 |  202  43   2 |
4   |  C_20160805 |    8  354   10 | -258 146  10 |  307 208  20 |
5   |  C_20160810 |    3  401    6 | -491 342  15 |  205  59   3 |
6   |  C_20160811 |    8  330   15 | -479 317  33 |   97  13   2 |
7   |  C_20160815 |   10  234   11 | -141  51   4 |  268 184  18 |
8   |  C_20160816 |    5  215    6 | -257 140   6 |  187  75   4 |
9   |  C_20160817 |    6  371   10 | -424 300  21 |  205  70   6 |
10  |   C_2016082 |    4  276    9 | -389 195  12 |  249  80   7 |
11  |   C_2016083 |    5  229   12 | -462 226  19 |   59   4   0 |
12  | C_20160905A |    9  370   10 | -296 222  15 |  242 148  14 |
13  | C_20160905B |    5  436    7 | -372 268  13 |  295 168  11 |
14  |  C_20160906 |    8  307    7 | -269 232  11 |  153  75   5 |
15  | C_20160908A |    3  102    8 | -152  21   1 |  302  82   6 |
16  | C_20160908B |    4  306    7 | -421 265  14 |  165  41   3 |
17  | C_20160908C |    5  378    5 | -282 200   8 |  266 178   9 |
18  |   C_2016092 |    2  184    6 | -320 117   5 |  241  67   4 |
19  |   C_2016093 |    5  442    8 | -516 433  25 |   75   9   1 |
20  |   C_2016100 |    7  345    7 | -287 202  10 |  240 143   9 |
21  |  C_20161024 |   11  479   11 | -377 400  30 |  168  79   8 |
22  |  C_20161026 |    5  357    6 | -368 263  12 |  220  94   6 |
23  | C_20161031A |    5  325   10 | -408 201  14 |  320 124  12 |
24  | C_20161031B |    5  487    7 | -442 348  17 |  280 139   9 |
25  | C_20161101A |    6  298    9 | -299 160  10 |  277 138  11 |
26  | C_20161101B |    3  288    9 | -520 258  17 |  178  30   3 |
27  | C_20161104A |    6  339    6 | -320 275  12 |  155  65   4 |
28  | C_20161104B |    6  392    8 | -304 187  10 |  318 205  15 |
29  |  C_20161105 |    1  205    4 | -450 157   5 |  248  48   2 |
30  | C_20161106A |    4  561    8 | -589 512  28 |  181  49   3 |
31  | C_20161106B |    5  419    9 | -477 326  20 |  254  92   7 |
32  | C_20161107A |    5  130   20 | -388  92  13 |  250  38   7 |
33  | C_20161107B |    6  462    7 | -407 357  18 |  220 104   7 |
34  | C_20161107C |    2  368    8 | -656 347  19 |  159  20   1 |
35  |  C_20161108 |    2  373    8 | -692 351  20 |  171  21   2 |
36  |  C_20161109 |    3  204    7 | -426 196  10 |   84   8   1 |
37  |  T_20160722 |   12  489   15 |  161  53   6 |  459 435  63 |
38  |  T_20160725 |   17  330   10 |  185 149  11 |  203 180  17 |
39  |  T_20160726 |    4   81    7 | -171  48   2 | -141  33   2 |
40  | T_20160727A |   17  351   25 |  270 131  23 |  351 221  52 |
41  | T_20160727B |   19  479   10 |  226 252  18 |  215 227  22 |
42  |  T_20160801 |   18  309   17 |  293 242  29 |  155  67  11 |
43  |  T_20160802 |   20  488   14 |  347 443  45 |  111  45   6 |
44  |  T_20160804 |   14  223    7 |  159 139   7 |  124  84   5 |
45  |  T_20160805 |   17  215    9 |  150 114   7 |  141 101   8 |
46  |  T_20160808 |    7  283   20 | -359 111  16 | -446 172  33 |
47  |  T_20160810 |   18  510   13 |  337 397  38 |  179 112  14 |
48  | T_20160812A |   17  439    9 |  257 335  21 |  143 104   9 |
49  | T_20160812B |   16  380   10 |  298 375  26 |   35   5   0 |
50  |  T_20160815 |    6   84   16 | -289  83   9 |  -29   1   0 |
51  |  T_20160816 |    6  362    8 | -263 147   8 | -318 216  15 |
52  |  T_20160817 |   12  157   14 |  113  28   3 |  241 128  17 |
53  |  T_20160818 |    6  477    9 | -341 230  14 | -354 247  20 |
54  |  T_20160819 |    7  381    9 | -157  55   3 | -384 327  26 |
55  |  T_20160822 |    8  280    5 | -100  38   1 | -251 241  12 |
56  |  T_20160823 |    7  234   16 | -187  41   5 | -403 192  29 |
57  | T_20160824A |   13  406    7 |   72  25   1 | -282 382  26 |
58  | T_20160824B |    7  424    9 | -246 121   8 | -390 304  27 |
59  |  T_20160825 |    8  257    8 |  -83  18   1 | -299 238  17 |
60  |  T_20160830 |    7  177    6 | -112  42   2 | -201 135   7 |
61  |  T_20160831 |   11   91    8 |  -74  20   1 | -139  71   5 |
62  | T_20160901A |    5  301    7 |  -77  10   1 | -406 291  20 |
63  | T_20160901B |    3  287    7 | -405 163   8 | -354 124   8 |
64  | T_20160906A |   13  316   11 |  228 165  13 |  217 150  16 |
65  | T_20160906B |    9  201    5 |   16   1   0 | -194 199   9 |
66  | T_20160907A |    5  127   10 | -217  58   4 | -238  69   6 |
67  | T_20160907B |    6  145   10 |  189  57   4 |  233  87   8 |
68  |  T_20160908 |    6    2    7 |    6   0   0 |  -27   2   0 |
69  | T_20160909A |    9   35    5 |   87  35   1 |   -7   0   0 |
70  | T_20160909B |    3   99    5 |   80  11   0 | -226  88   4 |
71  | Tr_20160909 |    9   35    5 |   87  35   1 |   -7   0   0 |
72  | T_20160912A |    9   93    6 |  -45   8   0 | -149  85   5 |
73  | T_20160912B |    3  123    8 | -266  74   4 | -217  49   4 |
74  | T_20160913A |    7  258    6 |  -35   4   0 | -294 254  15 |
75  | T_20160913B |    3   76   22 | -439  73  11 |  -82   3   1 |
76  | Tr_20160913 |    7  258    6 |  -35   4   0 | -294 254  15 |
77  |  T_20160916 |   10  108    6 |   58  15   1 | -148  93   5 |
78  |  T_20160917 |    4   46    7 | -169  46   2 |   14   0   0 |
79  |   T_2016092 |    8  142    6 |   47   8   0 | -192 134   7 |
80  |   T_2016093 |   11  176    9 |   18   1   0 | -224 175  14 |
81  | T_20161003A |   13   91   16 |  126  33   4 |  167  58   9 |
82  | T_20161003B |   11   63    6 |  -37   6   0 | -110  56   3 |
83  |  T_20161005 |   12  131    4 |  -16   2   0 | -136 129   5 |
84  |  T_20161006 |   16  427    9 |  215 212  14 |  217 215  19 |
85  | T_20161010A |   13  142    7 |  157 113   6 |  -79  28   2 |
86  | T_20161010B |   15  287    7 |  217 278  13 |  -38   9   1 |
87  |  T_20161011 |   13   72    5 |   86  48   2 |  -61  24   1 |
88  |  T_20161012 |   14   94    9 |  152  94   6 |   -6   0   0 |
89  |  T_20161013 |    7   51    8 | -106  28   2 |  -98  24   2 |
90  | T_20161014A |   10  207    5 |  188 180   6 |  -73  27   1 |
91  | T_20161014B |   14  161    6 |  159 157   7 |  -28   5   0 |
92  |  T_20161017 |   10   41   15 |   66   8   1 | -138  33   5 |
93  |  T_20161018 |    9   92    6 |   21   2   0 | -144  90   5 |
94  | T_20161021A |    6  176    9 |  256 115   7 |  186  60   5 |
95  | T_20161021B |   10  175    7 |  123  57   3 | -177 118   8 |
96  | T_20161021C |    6  239    6 |  -33   3   0 | -291 236  13 |
97  |  T_20161027 |    7  115    6 |   52   9   0 | -176 106   5 |
98  |  T_20161028 |   10   86    7 |  128  64   3 |  -76  23   1 |
99  |   T_2016103 |   13  161    7 |   59  17   1 | -173 144   9 |
100 | T_20161101A |    9  258    5 |  -49  10   0 | -237 247  12 |
101 | T_20161101B |    4   90    7 | -146  32   2 | -194  57   4 |
102 | T_20161102A |    9  222    8 |   56  10   1 | -264 212  15 |
103 | T_20161102B |   11   84    6 |  102  53   2 |  -78  31   2 |
104 | T_20161102C |    7  115    4 |   59  17   0 | -144  99   4 |
105 | T_20161103A |   11  167    7 |   77  25   1 | -181 141   9 |
106 | T_20161103B |   10  248    5 |  138 114   4 | -150 134   6 |
107 | T_20161104A |   10   65    7 |   96  37   2 |  -85  28   2 |
108 | T_20161104B |    9   71    4 |   55  16   1 |  -99  54   2 |
109 | T_20161104C |   12  208    7 |  200 184   9 |  -72  24   2 |
110 | T_20161105A |   12  215    7 |  188 176   8 |  -89  39   2 |
111 | T_20161105B |   10   74    7 |    2   0   0 | -146  74   5 |
112 |  T_20161106 |    8  126    6 |  129  56   2 | -145  70   4 |
113 | T_20161107A |   12   77   10 |  107  34   2 | -120  43   4 |
114 | T_20161107B |   12  174    6 |  160 123   6 | -103  50   3 |
115 | T_20161107C |    7  115    9 |   74  11   1 | -229 104   9 |
116 | T_20161107D |    9  101    5 |  -27   3   0 | -144  98   5 |
117 |  T_20161108 |    8  169    6 |   28   3   0 | -221 166  10 |
118 |  T_20161109 |    3   53    7 | -194  41   2 |  101  11   1 |

Columns:
        name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
1   |   agan |    5  424    5 |  -11   0   0 | -386 424  19 |
2   |    ago |    2  241    3 |  329 239   5 |  -30   2   0 |
3   |   also |    4  303    6 | -308 196   8 | -226 106   6 |
4   |  amerc |    7  618   11 | -583 607  46 |  -79  11   1 |
5   | amercn |    6  470   16 | -454 205  24 | -516 265  41 |
6   | amrcns |    3  522    8 | -714 496  28 | -163  26   2 |
7   |   appl |   42  505   28 | -314 382  77 | -178 122  32 |
8   |    are |   27  125    5 |  -69  64   2 |  -67  61   3 |
9   |   adnc |    4  247   18 | -190  21   3 | -625 226  38 |
10  |   back |    8   91    4 |   39   7   0 | -133  84   3 |
11  |    bad |    3  403    5 |  457 380  13 | -113  23   1 |
12  |   been |    9    7    4 |    3   0   0 |  -33   7   0 |
13  |   beng |    3    3    2 |  -33   3   0 |   -9   0   0 |
14  |   belv |    6  227    7 | -310 219  10 |   58   8   0 |
15  |   bttr |    3   17    3 |  -74  17   0 |   -8   0   0 |
16  |    big |    4  118    2 |  156 118   2 |   -7   0   0 |
17  |   bong |    4  229   18 |   32   1   0 | -636 229  40 |
18  |   brng |    3  235    4 |  -59   7   0 | -335 228   8 |
19  |   buld |    3   82    4 |   71  11   0 | -179  71   2 |
20  |   cmpg |    3  311    8 | -517 298  16 |  107  13   1 |
21  |   cant |    4   75    4 |  105  33   1 |  117  42   1 |
22  |   care |    4   13    9 |  -93  10   1 |  -50   3   0 |
23  |   chng |    3  156    8 | -148  20   1 | -383 136  10 |
24  |   clnt |   10  163   12 | -221 109   9 | -154  53   6 |
25  |   come |    4   38    4 |  109  36   1 |   23   2   0 |
26  |  cntrs |    2  153    3 |  160  51   1 | -227 102   3 |
27  |  cntry |   14  465    6 | -106  66   3 | -260 399  23 |
28  |    day |    3  137    4 | -160  54   1 |  198  83   3 |
29  |   deal |    3  174    5 |  284 128   4 | -171  46   2 |
30  |    did |    5  231    4 |  129  52   2 |  238 179   7 |
31  |   ddnt |    3  211    4 |  240 115   3 |  218  95   3 |
32  |   dsnt |    3   36    4 |  -23   1   0 |  132  35   1 |
33  |   dong |    4  198    3 |  234 190   4 |   51   9   0 |
34  |   dont |   13  485    6 |  282 438  19 |   92  47   3 |
35  |   dnld |    4  426   12 | -488 230  19 |  451 196  21 |
36  |   done |    3  103    4 | -175  52   2 |  175  51   2 |
37  |   elct |    2  461   11 | -790 352  26 |  440 109  11 |
38  |   even |    5   33    3 |   44   8   0 |   79  25   1 |
39  |   ever |    5  237    3 |   51   9   0 | -251 228   7 |
40  |   evry |    3   84    4 | -151  53   1 |  115  31   1 |
41  |   flks |    4  374    5 |  347 258   9 | -233 116   5 |
42  |   four |    2  200    3 |  176  56   1 | -284 144   5 |
43  |    get |   12  104    4 |  -44  16   0 |  103  88   3 |
44  |   give |    3   64    4 |  -44   3   0 |  182  61   2 |
45  |     go |    6  267    5 |   19   1   0 |  280 266  12 |
46  |   gong |   37  493   15 |  246 388  42 | -128 105  15 |
47  |   gonn |    3   47   27 |  404  42   8 | -147   6   1 |
48  |   good |    6  167    4 |   48   9   0 |  201 158   6 |
49  |    got |    7  213    7 |  -51   7   0 |  281 206  14 |
50  |   gvrn |    2  393    5 |  -89  10   0 | -557 384  18 |
51  |   gret |   12  183    6 |  175 166   7 |  -56  17   1 |
52  |    had |    7  287    6 |   26   2   0 |  317 285  17 |
53  |   hppn |    3  259    4 |  227 120   3 | -244 139   5 |
54  |    has |    9  215    7 | -244 210  10 |   37   5   0 |
55  |    hes |    4  378    7 |  123  20   1 |  523 359  25 |
56  |   help |    2  609    8 | -820 515  29 |  349  94   7 |
57  |   hllr |   11  300    8 |    2   0   0 | -295 300  24 |
58  |    ill |    2  118    3 |  194  82   2 |  128  36   1 |
59  |     im |    9   57    5 |   75  30   1 |   71  27   1 |
60  |    ive |    4  232    5 |  -54   7   0 |  308 226  10 |
61  |   impr |    2  130    3 | -231 105   2 |  113  25   1 |
62  |   indb |    3   13   49 |   30   0   0 |  280  13   6 |
63  |     is |   35  352    8 | -163 323  17 |   50  30   2 |
64  |   isis |    2   10   12 |  131   9   1 |  -47   1   0 |
65  |    its |   20  418    6 |  213 413  17 |  -22   5   0 |
66  |    job |    3   28    5 | -131  28   1 |   18   1   0 |
67  |   jobs |    9  423   11 |  -78  14   1 | -429 409  42 |
68  |   just |   12  273    4 |  -45  17   0 |  177 256   9 |
69  |   keep |    2   77    4 | -224  75   2 |  -38   2   0 |
70  |   know |   19  610    7 |   76  40   2 |  285 569  39 |
71  |   lght |    2  165    7 |   30   1   0 |  436 165  11 |
72  |    let |    3    3    3 |   17   1   0 |   27   2   0 |
73  |   like |   10  284    3 |  183 276   6 |   31   8   0 |
74  |   look |    7  265    7 |  288 214  10 |  142  52   3 |
75  |    lot |    6  346    4 |  187 127   4 |  246 220   9 |
76  |   love |    4   29    5 |  121  29   1 |   -3   0   0 |
77  |   made |    3    3    3 |  -36   3   0 |  -12   0   0 |
78  |   make |    9  370    5 | -290 365  13 |   34   5   0 |
79  |   mean |    4  415    6 |  392 227  10 |  357 188  11 |
80  |   mexc |    2  308    5 |  444 222   8 | -276  86   4 |
81  |   mltr |    2    6   12 |   43   1   0 |  -98   5   1 |
82  |   mlln |    2    7    5 |   34   2   0 |   66   6   0 |
83  |   mony |    4  300    4 |  323 279   8 |  -89  21   1 |
84  |   need |    4  249    6 | -335 182   8 |  203  67   4 |
85  |    new |    6  123   12 | -225  73   6 | -186  50   5 |
86  |    not |   18  316    4 | -139 226   6 |   88  90   3 |
87  |   obam |    3   18    5 |   89  12   0 |  -67   7   0 |
88  |     ok |    4  597    8 |  644 488  28 |  304 109   8 |
89  |   only |    3  207    5 | -262 125   4 | -212  82   4 |
90  |    out |   12   90    4 |  -26   6   0 |  101  84   3 |
91  |    pay |    3  130    6 | -237  75   3 |  203  55   3 |
92  |   pepl |   25   10    5 |   18   5   0 |   20   5   0 |
93  |   prcn |    5  435    6 |  206  84   4 | -420 350  20 |
94  |     ph |    2  136   10 |  353  74   5 |  325  62   6 |
95  |   plac |    2    5    3 |  -12   0   0 |  -47   4   0 |
96  |   plan |    2  184    7 | -360 113   6 | -285  71   5 |
97  |   prsd |    6  539   10 | -483 358  26 |  343 181  17 |
98  |    put |    3   34    2 |  -91  30   1 |  -30   3   0 |
99  |   rlly |    6  427    6 | -128  43   2 |  381 384  20 |
100 |   rmmb |    3  103    4 |   67   9   0 | -220  94   4 |
101 |   rght |   11  294    4 |  201 286   9 |   35   9   0 |
102 |   said |   12  567   10 |  275 236  17 |  326 331  32 |
103 |    say |    8  269    3 |  141 144   3 |  132 125   4 |
104 |    see |    6  233    4 |  159  99   3 |  185 134   5 |
105 |   seen |    2   15    4 |   88  13   0 |  -36   2   0 |
106 |    she |   15  307   13 |  209 133  13 | -239 174  22 |
107 |   shes |    4  273    5 |  358 237   9 | -140  36   2 |
108 |   stat |    4  192    5 | -143  43   2 | -265 149   7 |
109 |   stts |    4   47    3 |  -21   2   0 | -105  45   1 |
110 |   stop |    2  223    4 |  160  41   1 | -335 181   6 |
111 |   take |    6   74    3 |  127  74   2 |    1   0   0 |
112 |   talk |    2  112    4 |  -73   8   0 |  271 105   4 |
113 |    tax |    2   36   11 | -251  34   3 |  -67   2   0 |
114 |   tell |    5   56    3 |  -13   1   0 |  112  55   2 |
115 |  thank |    9  171   13 | -252 110  10 | -186  60   7 |
116 |   thts |   10   84    4 |   45  15   0 |   98  69   2 |
117 |   thrs |    2   31    3 |   66   8   0 |  110  23   1 |
118 |   thes |    7  120    5 |  157  93   3 |  -85  27   1 |
119 |   thyr |   10  623   10 |  496 623  45 |  -13   0   0 |
120 |  thing |    3  358    4 |  293 202   5 |  257 156   5 |
121 |  thngs |    4  128    3 |  130  66   1 |  125  62   1 |
122 |  think |    9  440    6 |   99  37   2 |  325 402  23 |
123 |   thos |    5  236    4 | -275 230   6 |   47   7   0 |
124 |   time |    7   35    4 |  -69  23   1 |  -50  12   0 |
125 |   tgth |    3  670   12 | -944 606  51 |  305  63   7 |
126 |    too |    2   95    4 | -231  86   2 |   74   9   0 |
127 |   trad |    3  253    8 |  275  86   5 | -384 167  13 |
128 |   trmp |   18   16   17 |   74  16   2 |   -9   0   0 |
129 |   untd |    4  122    4 | -103  29   1 | -184  93   3 |
130 |     up |   10  154    3 |  -72  41   1 |  121 113   4 |
131 |   very |   12  126    9 |  181 109   7 |  -72  17   1 |
132 |   vote |    5  147   10 | -330 136  10 |  -98  12   1 |
133 |   wall |    3  311    6 |  248  83   4 | -412 228  13 |
134 |   want |   12  245    7 | -151 103   5 |  178 143  10 |
135 |   wnts |    3   98    3 |  128  39   1 | -156  59   2 |
136 |    was |   18  392   10 |   83  31   2 |  283 362  35 |
137 |    way |    6  125    2 |  130 121   2 |   25   5   0 |
138 |   well |    3  143    5 |  200  60   2 | -235  83   4 |
139 |   were |   22  374   12 |  249 312  26 | -111  62   7 |
140 |   well |    5  452    6 |  -36   3   0 |  440 449  25 |
141 |   were |    6  108    6 |  -74  13   1 |  197  94   5 |
142 |   whts |    4  331    3 |  339 329   8 |  -26   2   0 |
143 |    why |    3   81    4 | -111  28   1 |  151  53   2 |
144 |    win |    4  222    8 |  297 124   7 | -264  98   8 |
145 |   work |    5  553   13 | -727 504  47 |  226  49   6 |
146 |   wrkn |    3  297    6 | -480 288  11 |   83   9   0 |
147 |   wrld |    4   62    3 |  -84  26   1 |  -98  35   1 |
148 |   yers |    6   98    3 |   91  41   1 | -108  57   2 |
149 |  youre |    5  184    4 |  240 154   5 |  105  30   1 |
150 |   your |   11  273    7 | -211 197   9 | -132  77   5 |

Basic plot

plot(d_ca)

Customized plot

Code
texts_df <- row_pcoord(d_ca)[,c(1, 2)] %>% 
  as_tibble(rownames = "text") %>% 
  mutate(Subcorpus = re_retrieve_first(fnames, "/clinton_trump/([^/]+)", requested_group = 1))

words_df <- col_pcoord(d_ca)[,c(1, 2)] %>% 
  as_tibble(rownames = "word")

dim_1 <- sprintf("Dimension 1 (%.2f %%)", summary(d_ca)$scree[1,3])
dim_2 <- sprintf("Dimension 2 (%.2f %%)", summary(d_ca)$scree[2,3])

ggplot(words_df, aes(x = V1, y = V2)) +
  geom_text(aes(label = word), color = "gray60") +
  geom_point(data = texts_df, aes(color = Subcorpus)) +
  scale_color_manual(values = c("#0000CD","#DC143C")) +
  geom_hline(yintercept = 0, color = "darkgray") +
  geom_vline(xintercept = 0, color = "darkgray") +
  theme_bw(base_size = 12) +
  labs(x = dim_1, y = dim_2) +
  coord_fixed()

Next: Factor Analysis